Understanding perspectival language is important for applications like dialogue systems and human-robot interaction. We present a dataset for evaluating perspective inference in English, ProSPer, and use it to explore how humans and Transformer-based language models infer perspective.

Key contributions:
- ProSPer: a novel dataset for probing understanding of spatial perspectival language.
- Novel human behavioral data showing that humans achieve around 77-88% accuracy.
- Comparison of neural language models, showing that RoBERTa’s accuracy is human-like.
- Fine-grained error analysis guided by previous psycholinguistic work, revealing a genre frequency bias for humans and RoBERTa.

Predicting Spatial Perspective Requires:
- Determining who is important enough to be a perspective-holder (Grosz et al. 1995)
- Gathering and evaluating contextual evidence
- Resolving ambiguity
- Inferring spatial relations

ProSPer: Probing Spatial Perspective

Task: given a passage with an omitted verb, decide if the missing word is come or go.

Example: Rick changed the subject. “I heard that you were having some furniture delivered this afternoon,” he said to Aunt Emily. “I thought I’d ___ by and see if you needed any help.”

(1) go (2) come

Automatically selected subset: 47385 examples of come, go, walk, drive, and arrive from the OANC

Annotated subset: 600 examples from Davies, 2008, 2016, 2011 annotated for perspective-holder, destination, syntactic environment, and tense.

Human Performance
- Human judgments collected on 3 ProSPer subsets:
 - Random: 600 items randomly sampled from the Automatic subset
 - NN Confounding: the 300 Automatic items most challenging for NN models.
 - Annotated: the entire Annotated subset
- 300 participants recruited through Prolific
- Target verb presented with its semantic competitor
- Bidirectional context provided

Neural Network Performance

Evidence tentatively supports a genre frequency bias: RoBERTa is best at predicting perspective with syntactic environments and perspective-holders common in text; humans do better in conversational contexts.

Summary

Exploring Perspectival Biases

Strong Egocentricity Hypothesis
- Low accuracy for come relative to other verbs (Epley et al., 2004; Lin et al., 2010).

Weak Egocentricity Hypothesis
- High accuracy with speaker perspectives (Harris, 2012; Anderson, 2020).

Genre Frequency Bias Hypothesis
- Human accuracy improved by conversation-like contexts and speaker or listener perspectives.
- RoBERTa accuracy improved by text-like contexts and perspectives common in text.

Citations