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Overview 
- Research questions

- Uniformity/variation within AAE

- Data & approach
- Corpus of 227M tweets

- Automatically detecting morphosyntactic features

- Results
- Regional variation

- Demographic variation

- Conclusion

2



Variation in AAE 
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Variation in AAE
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Yaeger-Dror (2007), Wroblewski et al. (2009), Yaeger-Dror & Thomas (2010), 
Lee (2016), Austen (2017), Jones (2020)



Research questions

- To what extent is there systematic morphosyntactic variation within 

AAE?

- How much of this variation can be accounted for by social factors (i.e. 

region, race, age, socioeconomic status)?
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Data

- 227M geotagged tweets from Twitter Gardenhose
- Posted from the US during May 2011 - April 2015
- Filtered to prioritize conversational language and limit automated posts

- 5 orders of magnitude larger than previous Twitter corpus studies of 
AAE, with at least some data in all US counties

6



Morphosyntactic features
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Automatic feature detection  

- Task: given a set of features F, for each f ∈ F identify utterances which 
contain f

- For our large dataset, automatic methods are a valuable alternative to 
manual annotation
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Automatic feature detection: our framework 

- Generate a small contrast set

- Fine-tune BERT on this contrast set, where each head is a binary 
classifier for a single feature
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Automatic feature detection: our framework 

- Generate a small contrast set
- A labeled collection of positive and negative examples that are highly similar, where a 

positive example has the feature/label and a negative example does not (Gardner et al. 
2020)
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I be out at my bus stop every day. I’m out at my bus stop every day.
I’ll be out at my bus stop every day.
I would be out at my bus stop every day.



Automatic feature detection: our framework 

- Generate a small contrast set

Field Matters @ COLING2022
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CGEdit
- Input: 

- Seed set of positive examples
- Target corpus n-gram counts

- Method: 
- Corpus-guided edits 
- Human-in-the-loop filtering

- Output: 
- Morphosyntactically contrastive training data
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Automatic feature detection: our framework 

- Generate a small contrast set

- Fine-tune BERT on this contrast set, where each head is a binary 
classifier for a single feature
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Automatically detecting features
- Input: 227M geotagged tweets

- Output: Census tract-level relative frequencies for 18 morphosyntactic 
features

rf
feat

 = # tweets with feature / # total tweets
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Automatically detecting features
- Input: 227M geotagged tweets

- Output: Census tract-level relative frequencies for 18 morphosyntactic 
features

rf
feat

 = # tweets with feature / # total tweets

z
feat

 = (rf
feat

 - μ
feat

) / σ
feat
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Automatically detecting features
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Automatically detecting features
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Research questions
- To what extent is there systematic morphosyntactic variation within 

AAE? 

- Principal Components Analysis (PCA)
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PCA: feature loadings
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PCA: regional variation
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PCA: AAEScore



Research questions
- To what extent is there systematic morphosyntactic variation within 

AAE? 

- Principal Components Analysis (PCA)

- How much of this variation can be accounted for by social factors (i.e. 
region, race, age, socioeconomic status)?

- Correlation analysis
- Linear regression
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Correlation analysis
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Pearson’s r

Afr.-Am. pop. 0.79

RUCA -0.07

Latitude -0.24

Mexican pop. -0.04

PR pop. 0.07 

Income -0.39

… …



Linear Regression analysis: RUCA
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Pearson’s r (1)

Afr.-Am. pop. 0.79 2.07

RUCA -0.07 0.06

Latitude -0.24

Mexican pop. -0.04

PR pop. 0.07 

Income -0.39

… …



Linear Regression analysis: RUCA + latitude
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Pearson’s r (1) (2)

Afr.-Am. pop. 0.79 2.07 2.03

RUCA -0.07 0.06 0.09

Latitude -0.24 -0.40

Mexican pop. -0.04

PR pop. 0.07 

Income -0.39

… …



Linear Regression analysis: Mexican pop.
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Pearson’s r (1) (2) (3)

Afr.-Am. pop. 0.79 2.07 2.03 2.09

RUCA -0.07 0.06 0.09

Latitude -0.24 -0.40

Mexican pop. -0.04 0.19

PR pop. 0.07 

Income -0.39

… …



Rural South
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Conclusions
- To what extent is there systematic morphosyntactic variation within 

AAE? 
- There is systematic variation, which can be characterized by our first principal 

component (AAEScore)

- How much of this variation can be accounted for by social factors (i.e. 
region, race, age, socioeconomic status)?

- Can mostly be explained by relative African American population; but 
urbanization, geographic region, racial identity also play a role
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Thank you!
Slides and abstract available at 

tmasis.github.io/
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