Investigating morphosyntactic variation in African American English on Twitter

Tessa Masis¹ they/them/theirs

Taylor Jones² he/him/his Chloe Eggleston¹ *she/her/hers*

Meghan Armstrong¹ she/her/hers

Lisa Green¹ she/her/hers

Brendan O'Connor¹

¹University of Massachusetts Amherst

²Naval Postgraduate School

Overview

- Research questions
 - Uniformity/variation within AAE
- Data & approach
 - Corpus of 227M tweets
 - Automatically detecting morphosyntactic features
- Results
 - Regional variation
 - Demographic variation
- Conclusion

Variation in AAE

Sociolinguistic Folklore in the Study of African American English **REGION**

Walt Wolfram* North Carolina State University

REGIONALITY IN THE DEVELOPMENT OF AFRICAN AMERICAN ENGLISH

WALT WOLFRAM AND MARY E. KOHN

A focus on a core set of basilectal structures in non-Southern urban communities obscured regional variation in early sociolinguistic studies of African American English (AAE). However, community comparisons, particularly in the rural South, indicate that regionality has played an essential role in the past and present development of the variety. This current analysis compares apparent time evidence for ³

Variation in AAE

Sociolinguistic Folklore in the Study of African American English Walt Wolfram* North Carolina State University AFRICAN AMERICAN ENGLISH

WALT WOLFRAM AND MARY E. KOHN

Yaeger-Dror (2007), Wroblewski et al. (2009), Yaeger-Dror & Thomas (2010), Lee (2016), Austen (2017), Jones (2020)

Research questions

To what extent is there systematic morphosyntactic variation within AAE?

- How much of this variation can be **accounted for by social factors** (i.e. region, race, age, socioeconomic status)?

Data

- 227M geotagged tweets from Twitter Gardenhose
- Posted from the US during May 2011 April 2015
- Filtered to prioritize conversational language and limit automated posts

- 5 orders of magnitude larger than previous Twitter corpus studies of AAE, with at least some data in all US counties

Morphosyntactic features

Feature	Example
*Zero possessive	they want to do they own thing
Overt possessive	they want to do <u>their</u> own thing
*Zero copula	she the folk around here
Overt copula	she's the folk around here
*future gone	we gone rock it out like
*Habitual <i>be</i>	I just <u>be</u> liking the beat
*Resultant done	you <u>done</u> lost your mind
*be done	I <u>be done</u> died walking up that many
*steady	and you steady talking to them
*finna	she's finna have a baby
*Negative concord	I <u>ain't</u> doing nothing wrong
Single negative	I <u>ain't</u> doing anything wrong
*Negative auxiliary inversion	nobody don't say nothing
*Preverbal negator <i>ain't</i>	I <u>ain't</u> doing nothing wrong
*Zero 3rd person singular present tense -s	I don't know if it <u>count</u>
* is/was generalization	they <u>is</u> die hard Laker fans
*Double-object construction	I got <u>me</u> my own car
*Wh-question	what they were doing?

Automatic feature detection

 Task: given a set of features F, for each f ∈ F identify utterances which contain f

- For our large dataset, automatic methods are a valuable alternative to manual annotation

- Generate a small contrast set

- Fine-tune BERT on this contrast set, where each head is a binary classifier for a single feature

- Generate a small contrast set
 - A labeled collection of positive and negative examples that are highly similar, where a positive example has the feature/label and a negative example does not (Gardner et al. 2020)

I be out at my bus stop every day.

I'm out at my bus stop every day. I'll be out at my bus stop every day. I would be out at my bus stop every day.

- Generate a small contrast set

Corpus-Guided Contrast Sets for Morphosyntactic Feature Detection in Low-Resource English Varieties

Tessa Masis they/them/theirs Anissa Neal she/her/hers

Lisa Green she/her/hers

Brendan O'Connor he/him/his

University of Massachusetts Amherst {tmasis,brenocon}@cs.umass.edu {anneal,lgreen}@linguist.umass.edu

Field Matters @ COLING2022

CGEdit

- Input:
 - Seed set of positive examples
 - Target corpus n-gram counts

- Method:
 - Corpus-guided edits
 - Human-in-the-loop filtering

- Output:
 - Morphosyntactically contrastive training data

- Generate a small contrast set

- Fine-tune BERT on this contrast set, where each head is a binary classifier for a single feature

- Input: 227M geotagged tweets

- Output: Census tract-level relative frequencies for 18 morphosyntactic features

rf_{feat} = # tweets with feature / # total tweets

- Input: 227M geotagged tweets

- Output: Census tract-level relative frequencies for 18 morphosyntactic features

rf_{feat} = # tweets with feature / # total tweets

$$z_{feat}$$
 = (rf_{feat} - μ_{feat}) / σ_{feat}

(a) Distribution of resultant done

(b) Distribution of habitual be

(c) Distribution of zero copula versus overt copula

(d) Distribution of negative concord versus single negative

Research questions

- To what extent is there systematic morphosyntactic variation within AAE?
 - Principal Components Analysis (PCA)

PCA: feature loadings

Feature	Frequency	AAEScore
ain't	2,168,105	.9156
Habitual be	947,900	.8436
future gone	477,514	.8409
Negative concord	1,473,423	.8258
Zero copula	7,726,637	.7867
Zero 3rd person singular present tense -s	1,100,333	.6721
finna	769,822	.6261
Negative auxiliary inversion	135,497	.6106
Resultant done	86,933	.5794
Wh-question	1,517,957	.5754
Zero possessive	239,302	.4587
Double object	486,346	.3767
Single negative	22,907,646	.3037
is/was generalization	1,321,730	.2814
steady	15,047	.2248
be done	146	.0509
Overt possessive	2,735,250	4840
Overt copula	53,925,152	7126
Percentage of variance		35.58

PCA: AAEScore

Research questions

- To what extent is there systematic morphosyntactic variation within AAE?
 - Principal Components Analysis (PCA)

- How much of this variation can be **accounted for by social factors** (i.e. region, race, age, socioeconomic status)?
 - Correlation analysis
 - Linear regression

Correlation analysis

	Pearson's r	
AfrAm. pop.	0.79	
RUCA	-0.07	
Latitude	-0.24	
Mexican pop.	-0.04	
PR pop.	0.07	
Income	-0.39	

Linear Regression analysis: RUCA

	Pearson's r	(1)
AfrAm. pop.	0.79	2.07
RUCA	<mark>-0.07</mark>	<mark>0.06</mark>
Latitude	-0.24	
Mexican pop.	-0.04	
PR pop.	0.07	
Income	-0.39	

Linear Regression analysis: RUCA + latitude

	Pearson's r	(1)	(2)
AfrAm. pop.	0.79	2.07	2.03
RUCA	<mark>-0.07</mark>	<mark>0.06</mark>	<mark>0.09</mark>
Latitude	-0.24		-0.40
Mexican pop.	-0.04		
PR pop.	0.07		
Income	-0.39		

Linear Regression analysis: Mexican pop.

	Pearson's r	(1)	(2)	(3)
AfrAm. pop.	0.79	2.07	2.03	2.09
RUCA	-0.07	0.06	0.09	
Latitude	-0.24		-0.40	
Mexican pop.	<mark>-0.04</mark>			<mark>0.19</mark>
PR pop.	0.07			
Income	-0.39			

Rural South

Conclusions

- To what extent is there systematic morphosyntactic variation within AAE?
 - There is systematic variation, which can be characterized by our first principal component (AAEScore)

- How much of this variation can be **accounted for by social factors** (i.e. region, race, age, socioeconomic status)?
 - Can mostly be explained by relative African American population; but urbanization, geographic region, racial identity also play a role

Thank you!

Slides and abstract available at <u>tmasis.github.io/</u>

This material is based upon work supported by the National Science Foundation under grant BCS-2042939. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation. **Tessa Masis** tmasis@cs.umass.edu

Chloe Eggleston ceggleston@umass.edu

Lisa Green lgreen@linguist.umass.edu

Taylor Jones thelanguagejones@gmail.com

Meghan Armstrong armstrong@spanport.umass.edu

Brendan O'Connor brenocon@cs.umass.edu